Ошибки в полах по грунту, часть 1

Возврат к списку

Наше проектное бюро получает очень много заказов на аудит конструкций и готовых проектов. Удручает большое количество ошибок в конструкциях полов по грунту. В этой статье разберём основные из них, совершаемые в каменных домах. 

Для иллюстрации ошибок воспользуемся лежащими в свободном доступе изображениями узлов, найденных по поиску в Яндексе (они будут со ссылками, чтобы не нарушать авторских прав). Они в целом повторяют и те ошибки, что мы видим в присланных на аудит проектах.


Рассмотрим первый случай:

Промерзание в полах по грунту по стыку на верхнем обрезе фундамента

Рис. 1. Узел с промерзанием по стыку на верхнем обрезе фундамента.

Чтобы понять, что в этом узле не так, построим карты тепловых полей:

ошибка 1.1.jpg

Рис. 1.1. Карта тепловых полей для узла на рис.1 (утеплитель фундамента 50 мм).

Видим, что в углу возможны отрицательные температуры, что совершенно недопустимо для такого решения.

Улучшим немного узел на рис. 1, подняв утеплитель фундамента, чтобы он с нахлёстом заходил на стену:

ошибка 1.2.jpg

Рис. 1.2. Карта полей с учётом нахлёста 10 см вертикального утеплителя толщиной 50 мм на стену.

Пытаемся дальше улучшить этот узел. Увеличиваем толщину внешнего утеплителя фундамента до 100 мм:

ошибка 1.3.jpg

Рис. 1.3. Карта полей с учётом нахлёста 10 см вертикального утеплителя толщиной 100 мм на стену.

Как видно из карты, внешнее утепление уже даёт мало толка, потому что наш фундамент находится в контакте с грунтом основания, который даже если и будет защищён от промерзания, все равно будет иметь невысокую температуру: +2..3 градуса Цельсия. А поскольку бетон является довольно хорошим проводником тепла, весь фундамент будет иметь примерно такую же температуру. Верхний правый угол фундамента, практически выходящий в помещение, это - мостик холода, поэтому дальнейшее изолирование фундамента не даёт эффекта, нужно изолировать пол и все помещение от фундамента. 

Подъём отметки пола относительно верхнего обреза фундамента начинает давать свои плоды:

ошибка 1.4.jpg

Рис. 1.4. Карта полей с учётом подъёма плиты пола относительно обреза фундамента.

Но и тут картинка не самая лучшая, мы получили 9 градусов в углу при 20 градусах воздуха в помещении, т.е. имеем перепад температуры в 11 градусов, а СП 50.133300.2012 требует от нас перепад не более 2 градусов в этой зоне:

таблица 5 СП 50.133300.2012.jpg

Такая разница в температуре воздуха и поверхности угла может привести к конденсация влаги (точка росы). Поэтому при конструировании полов по грунту рекомендуется придерживаться "правила 100 мм", прямо вытекающее из п. 5.2 СП 50.133300.2012:

правило 100 мм для утепления полов по грунту

Рис. 1.5. "Правило 100 мм". 

Для того, чтобы понять, как это правило работает, надо построить мысленно окружность радиусом 100 мм с центром в нижнем углу плиты (стяжки) пола (красная линия). Окружность - это расстояние, которое должно быть от угла плиты пола до холодных конструкций (фундамента), причём это расстояние должно быть заполнено материалом с теплопроводностью не выше 0,05 Вт/м*С (пенополистирол). При такой толщине и такой теплопроводности мы получаем минимальное базовое нормативное сопротивление  для конструктивного элемента, определённое в СП 50.133300.2012 как 2.1 (табл.3). Если же материал имеет большую теплопроводность, например 0.1-0.12 Вт/м*С (газобетон), расстояние должно быть пропорционально увеличено. На рис. 2 показаны две окружности с радиусами 100 и 200 мм, и мы видим, что очень значительный "кусок" угла фундамента попадает в зону 100 мм. Это и есть основная причина падения температуры угла.

Если посмотреть в разрезе "правила 100 мм" на любой из наших типовых узлов, то видно, что оно нами в целом выполняется:

проверка узла 1.png

Рис. 1.6. Проверка узла 1 на правило 100 мм.

На рисунке 3 показано, что лишь небольшой сектор окружности с радиусом 100 мм (красная), проведённой из нижней точки плиты пола, имеет контакт с холодными конструкциями через материалы с суммарной теплопроводностью всех слоёв выше 0,05 Вт/м*С (по линии оранжевой стрелки). Утечка тепла через эту зону будет незначительной в виду небольшой площади контакта.

С учётом "правила 100 мм" узел на рис. 1 должен был бы выглядеть вот так:

Тепловая карта узла примыкания полов по грунту к фундаменту, вариант исполнения с учётом "правила 100 мм"

Рис. 7. Тепловая карта узла примыкания полов по грунту к фундаменту, вариант исполнения с учётом "правила 100 мм".

Второй случай, который бы хотелось рассмотреть, это в целом рабочее решение, но которое легко может стать потенциально проблемным:

Ошибки в узле сочетания утеплённого финского фундамента и полов по грунту

Рис. 2. Утеплённый финский фундамент УФФ в комбинации с полами по грунту.

К самому фундаменту на рис. 2 вопросов нет, это классический УФФ, но сочетание с полами здесь далеко от идеального. Узел в целом лучше, чем рассмотренный выше, за счёт того, что утепление торца плиты пола делается более толстым слоем утеплителя. Если в узле на рис. 1 тонкая прослойка утеплителя между плитой и фундаментом играет роль деформационной ставки, и обычно бывает не более 20 мм, то в классическом УФФ  утепление делается не менее 50 мм. Вот узел УФФ от нашего проектного бюро:

узел УФФ.jpg

Рис. 2.1. Узел УФФ от m-project33.

Узел на рис.2.1 не полностью соответствует правилу 100 мм, но вся конструкция в целом укладываются в нормативные требования к расчётам теплового сопротивления узлов и конструкций. Итоговое качество этого узла "в натуре" будет определяться прежде всего толщиной вставки между плитой и фундаментом, а также величиной свеса стены вовнутрь. Кроме этого, нужно будет отдельно решать вопрос с дверным проёмом на улицу. Поэтому авторам рис.2 хотелось бы порекомендовать при исполнении этих улов обращать на это внимание. Отметим, что этот узел на рис. 2.1 сочетания УФФ и полов по грунту более уместен для деревянных и каркасных строений, где поднятие отметки пола относительно верхнего обреза фундамента проблематично ввиду запирания дерева массивом плиты пола.

Потенциальные проблемы узла на рис. 2 и 2.1 становятся лучше видны на вот таком примере (ситуация 3):

technology_base_02.jpg

Рис. 3. 3д-вид сочетания бетонного ростверка и полов по грунту.

Визуально это решение не сильно отличается от комбинации "УФФ+полы по грунту", рассмотренной выше. Отличия тем не менее есть:

  1. Это бетонный армированный ростверк, поэтому он будет обладать большими размерами по ширине, чем кладка из керамзитобетонных блоков;
  2. Теплопроводность бетона примерно в 5 раз выше, чем у керамзитобетона.

Если начать рассматривать этот узел в комплексе по стеной, то с большой вероятностью окажется, что внутренний верхний угол фундамента "въедет" вовнутрь помещения и будет служить областью пониженных температур. И ещё больше проблемы с этим узлом становятся очевидны в дверных проёмах. Поскольку пол находится на одной отметке с верхним обрезом фундамента, то дверную коробку приходится ставить прямо на ростверк. Возможности нормально утеплить нижний брус и область примыкания пола к дверной коробки при таких размерах не будет. Если же посмотреть на решение от нашей проектной организации, показанное на рис. 1.6, то видно, что дверная коробка ставится на блок газобетона, т.е. проблем с её утеплением не возникает. 

Вот такая картинка ходит по сети, причём так активно, что не удалось найти первоначального автора, чтобы как-то соблюсти авторские права и дать на него ссылку:

ошибки в полах по грунту 8.jpg

Рис. 4. Картина неизвестного художника.

Здесь не то что уголок фундамента застенчиво выглядывает в помещение, тут он весь смотрит вовнутрь, стоя в полный рост. 

Вот такая ошибка была обнаружена в обсуждаемой конструкции на одном из форумов. Хочется надеяться, что автора вовремя подкорректировали специалисты, принимавшие участие в обсуждении:

ошибки в полах по грунту 4.jpg

Рис. 5. Обсуждаемая конструкция.

Кроме обсуждаемого выше дефекта с примыканием пола к внешней стене, здесь есть ещё и недостаток со внутренними. Тут стяжка пола лежит прямо на фундаменте, на внутренней ленте. Тем, кто хочет возразить, что эта лента в теплом контуре и такое примыкание нестрашно, можно порекомендовать представить эту конструкцию в месте, где внутренняя лента соединяется с внешней. А также учесть, что у ленты внутри теплого контура в любом случае температура не очень высокая, поэтому мы имеем локальную область с более низкими температурами. Если будет в этом месте на полу лежать керамическая плитка, то будет ощущаться холод и ситуацию спасет только теплый пол.

В заключение хочется отметить, что довольно много встречается в интернете и грамотных решений по узлам примыкания полов и цокольных перекрытий к фундаменту, например, такие:

правильные решения.jpg

Рис. 6. Пример удачной конструкции узла примыкания полов по грунту к фундаменту.




Загрузка комментариев...