Распор на стены от стропильных систем

Возврат к списку

Мы уже неоднократно сталкивались со стойким убеждением у многих строителей и даже инженеров-конструкторов о том, что в стропильных системах с наслонными стропилами распора не возникает. Например, на сайте dwg.ru весьма авторитетный и уважаемый участник заявляет следующее:

с dwg.ru

Рис. 1. Цитата с сайта dwg.ru из темы с обсуждением распора.

Или вот видео от Антона Вебера, где он также говорит о том, что наслонные стропила не дают распор.

Разберёмся, так ли это. Прежде всего зафиксируем, что наслонные стропила – это такие стропила, которые нижним концом опираются на мауэрлат, верхним на коньковый прогон.

Рассмотрим две расчётные схемы стропильной арки двухскатной кровли для классического пятистенка 10х9. В обоих случаях мы имеем расстояние между крайними стенами 9 метров, в центре - срединная стена, высота конька относительно уровня мауэрлата 3 метра. Для простоты расчёта рассматриваем только снеговую нагрузку с номинальным значением 1,5 кПа при шаге стропил 600 мм. Поскольку с распором связаны прочностные расчёты, используем коэф. нагрузки 1,4. В итоге на каждое стропило приходит нагрузка 1,26 кН/м. Стропила выбраны сечением 50х200 мм, стойка под коньковой балкой - брус 150х150.

Схема 1

Рис. 2. Расчётная схема 1 с коньковой балкой, опирающейся на стойку 3.

Схема 2

Рис. 3. Расчётная схема 2 без коньковой балки.

Схема 1- это с наслонными стропилами, схема 2 - с висячими стропилами. В программном комплексе RSA рассчитываем указанные на рис.2-3 стропильные арки. Все опоры задаём как жесткие. Получаем следующие результаты:

Распор при жёстком креплении стропил

Рис. 4. Распорные усилия (Fx), возникающие в схеме 1.
Распор в схеме без конька

Рис. 5. Распорные усилия (Fx), возникающие в схеме 2.

Как видно из рис.4 и 5, действительно, распорные усилия при использовании наслонных стропил (схема 1) существенно отличаются от схемы 2, но при это они все равно есть и довольно приличные - 1.27 кН. Если учесть, что на 10-ти метровой стене таких стропил при шаге 600 мм будет 16 штук, то все они будут создавать на стену распирающее усилие в 20 кН ( 2 тн).

Но это ещё не все, на рис. 4 мы смоделировали идеализированный вариант стропильной арки с наслонными стропилами, распор в котором возникают из геометрии разложения сил. В действительности же есть ещё несколько факторов, которые обычно не учитываются, но которые также дают существенные распирающие усилия. Рассмотрим 2  наиболее существенных из них:

1. Неравномерная осадка фундамента. Представим, что центральная стена нашего здания, на которую приходится больше всего нагрузки от перекрытий и кровли, со временем осела чуть больше, чем наружные стены. Вместе с ней осаживается и коньковая балка. Даже незначительная неравномерная осадка центральной стены (на 1 мм больше, чем наружные) добавляет распорные усилия (почти на 0,5 кН):

Неравномерные осадки

Рис. 6. Увеличение распора при неравномерной осадке фундамента.

2. Распор от прогиба балок. Ещё один фактор, который редко учитывается, это геометрия реальных деревянных балок. Обычно при расчётах стропильных систем все деревянные элементы моделируются стержнями. При этом изменение геометрии этих стержней при изгибе не учитывается:

Распор от прогиба

Рис. 7. Смещение (удлинение), возникающее в следствии прогиба балки.

На рисунке 7 мы видим, что нижняя (растянутая) поверхность удлиняется и даёт небольшое смещение. Величина его небольшая, около 2 мм, но оно также даёт вклад в распорные усилия.

Таким образом, совокупные распорные усилия, возникающие в конструкциях стропильной системы с наслонными стропилами, могут достигать значительных величин, достаточных для повреждения стен из хрупких материалов, таких, как газобетон или поризованная керамика. Поэтому желательно учитывать их при проектировании. 

Традиционно влияние распора снижают с помощью устройства монолитного армопояса под мауэрлатом, а также с устройством подвижных опор в точках крепления стропил к мауэрлату. Многие считают, что гвоздевые соединения создают достаточную податливость узла крепления, которой достаточно для снятия распора. И для коротких стропил это действительно так, часто достаточно крепления на гвозди. Но для длинных стропил все же лучшим решением будет использование специализированного крепежа - скользящих опор:

Скользячка.jpg

Рис. 8. Скользящая опора.

Рассмотрим влияние таких опор в нашей расчётной схеме 1. Кроме контроля усилий в узлах крепления стропил рассмотрим также изгибающие моменты и прогибы:

Моменты и прогибы при жестком закреплении

Рис. 9. Усилия и моменты в схеме 1 при жестком закреплении стропил.

Моменты и прогибы со скользящими опорами

Рис. 10. Усилия и моменты в схеме 1 при использовании скользящих опор.

Из рис. 9 и 10 видно, что введение скользящих опор полностью убирает распор, при этом  изменения изгибающего момента в стропиле и увеличения прогиба не происходит.

А вот введение подкосов, вопреки распространённому мнению, практически не снижает распор:

Влияние подкосов на распор

Рис. 11. Влияние подкосов на снижение распора.

Усилия в стропилах при введении подкосов

Рис. 12. Усилия в стропилах при введении подкосов.

На рис. 12 видно, что при введении подкосов в расчётную схему, понижаются изгибающие моменты (1,68 кНм на рис. 12 против 2.28 кНм на рис.9) и прогибы (3 мм на рис. 12 против 17 мм на рис. 9), но горизонтальная составляющая Fx меняется незначительно (1,27 кН на рис.9 и 1,2 кН на рис.12).

Аналогичные выводы и решения (скользящая опора) содержались и в "Краткий курс построения частей зданий, читанный в императорском Московском техническом училище адъюнкт-профессором В.Г. Залесским", 1904 год:

Залесский1.png

Залесский 2.png

Рис. 13. Выдержки из курса В. Г. Залесского.


Загрузка комментариев...